High-Reduction Cycloidal Actuator for Robotics

In an effort to learn more about gearbox design, I became interested in cycloidal drives. What started as a proof of concept design quickly ballooned into a final semester project and ultimately, a fully functioning actuator. Check out this project to see how I developed a compact and fully 3D-printable gearbox for use on mobile robots or multi-DOF arms!

Multifacited Autonomous Rover

After finding a lack of commercially available rover platforms, I decided to design and manufacture my own system. For this, I developed an entirely custom rover chassis featuring 4 independent-driven suspension systems, brushless motor control, and a large payload capacity for a variety of missions. 

sUAS Design for Sensory and Swarm Missions

For this project, I sought to develop a fully autonomous, compact, and lightweight UAV for any intelligent mission. In order to be economical for our student group, the design would have to use commercially available electronics while maintaining stable and efficient flight characteristics. See the details below for how I designed and manufactured a workhorse airframe for researching uses of drone swarms.

Locating Crashed Rockets with Drones

To test applications of autonomous drones, I lead Rocket Locator: a project to locate crashed rockets based on their radio-frequency signature. For this, I constructed an omnidirectional antenna array to act as a sensory payload for a heavy-lift octocopter. Find out more about how this system helped accelerate our student group’s software development. 

Heavy Lift UAV Design and Modification

This project describes the construction of a heavy-lift octocopter and its subsequently ongoing iterations for testing a variety of systems. After starting with a commercial airframe, I realized that improvements would have to be made in order to facilitate its use with more advanced payloads and on-board computation. Read on to see how I learned to build and use large multirotors.

Swarm Carrier: Deploying Groups of UAVs From a Carrier Platform

In 2019, I proposed the Swarm Carrier project to research aerial deployment of drones for rapid surveying and search missions. Since then, I’ve lead the development of test payloads and flight missions to further understand how drones can be designed for rapid deployment. Developments include successful drop tests of multiple quadcopters, upcoming tests of a drop and re-integration mission using autonomous landings, and a multi-drop system capable of deploying a group of 6 vehicles. 

Quad Camp NU: Teaching Students to Build and Fly Drones

Quad Camp NU is a class that I developed to introduce students to drone flight and construction. With the goal of eliminating the entry barrier to UAV and robotics fields, I’ve organized semester-long classes in which students build FPV drones and get to fly them. 

Piloting Drones

I started flying drones in 2016 and have since been hooked by their ability to capture stunning aerial shots, competitively race, and push the boundaries of robotics research. I’ve built dozens of racing quadcopters and flown a variety of vehicles ranging from wings to commercial airframes. My involvement in the hobby brought me to 2 national championships for drone racing and experience as a commercial UAV pilot and technician.